• 新闻公告

    尊龙凯时平台 / 新闻公告 / AG尊龙凯时新闻 /

    新闻公告

    学术成果丨基地重大项目研究成果(三)

    2025-01-20

    在数字时代,数据科学已成为推动社会进步的关键力量。作为多学科融合的核心🧘,数据科学的基础理论研究重要性日益凸显。统计学作为数据科学的核心方法论😢,其理论与方法的创新与突破,对于提升我国数据科学和数据技术的整体实力具有重要意义🎀。为应对数字时代统计学中的重大基础理论与实践应用问题,本基地重大项目“数字时代的统计学理论与方法研究”利用大数据和人工智能等先进方法与工具,聚焦统计机器学习模型🦿、高维稀疏数据🔎、网络结构数据以及时空大数据等领域的若干关键问题开展深入研究🫴🏿。以下是项目组近期取得的一些研究成果。

    1. Li, Z., Zhang, Y., Yin, J. Estimating Double Sparse Structures over ℓu (ℓq)-Balls: Minimax Rates and Phase Transition. IEEE Transactions on Information Theory. 2024, 70:7066-7088.

    2. Zhang, Y., Li, Z., Liu, S., Yin, J. A minimax optimal approach to high-dimensional double sparse linear regression. Journal of Machine Learning Research. 2024, 25(369):1−66.

    3. Qiu, Y., Gao Q., Wang, X. Adaptive Learning of the Latent Space of Wasserstein Generative Adversarial Networks. Journal of the American Statistical Association. 2024. DOI: 10.1080/01621459.2024.2408778.

    4. Wu, Y., Lan, W., Fan, X., Fang, K. Bipartite network influence analysis of a two-mode network. Journal of Econometrics. 2024, 239:105562.

    5. Su, W., Guo, X., Chang, X., Yang, Y. Spectral Co-Clustering in Multi-layer Directed Networks. Computational Statistics & Data Analysis. 2024, 198:107987.

    6. Guo, X., Li, X., Chang, X. Wang, S., Zhang, Z. Fedpower: Privacy-Preserving Distributed Eigenspace Estimation. Machine Learning. 2024. 113: 8427–8458.

    论文题目与摘要

    1. Li, Z., Zhang, Y., Yin, J. Estimating Double Sparse Structures over ℓu (ℓq)-Balls: Minimax Rates and Phase Transition. IEEE Transactions on Information Theory. 2024, 70:7066-7088.

    https://ieeexplore.ieee.org/document/10659134

    1.png

    2. Zhang, Y., Li, Z., Liu, S., Yin, J. A minimax optimal approach to high-dimensional double sparse linear regression. Journal of Machine Learning Research. 2024, Online.

    https://jmlr.org/papers/v25/23-0653.html

    2.png

    3. Qiu, Y., Gao Q., Wang, X. Adaptive Learning of the Latent Space of Wasserstein Generative Adversarial Networks. Journal of the American Statistical Association. 2024. DOI: 10.1080/01621459.2024.2408778.

    https://www.tandfonline.com/doi/full/10.1080/01621459.2024.2408778

    3.png

    4. Wu, Y., Lan, W., Fan, X., Fang, K. Bipartite network influence analysis of a two-mode network. Journal of Econometrics. 2024, 239:105562.

    https://www.sciencedirect.com/science/article/abs/pii/S0304407623002786

    4.png

    5. Su, W., Guo, X., Chang, X., Yang, Y. Spectral Co-Clustering in Multi-layer Directed Networks. Computational Statistics & Data Analysis. 2024, 198:107987.

    https://www.sciencedirect.com/science/article/pii/S0167947324000719

    5.png

    6. Guo, X., Li, X., Chang, X. Wang, S., Zhang, Z. Fedpower: Privacy-Preserving Distributed Eigenspace Estimation. Machine Learning. 2024. 113: 8427–8458.

    https://link.springer.com/article/10.1007/s10994-024-06620-0

    6.png


    尊龙凯时平台专业提供🐦‍🔥:尊龙凯时平台尊龙凯时娱乐尊龙凯时登录等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流,尊龙凯时平台欢迎您。 尊龙凯时平台官网xml地图
    尊龙凯时平台 尊龙凯时平台 尊龙凯时平台 尊龙凯时平台 尊龙凯时平台 尊龙凯时平台 尊龙凯时平台 尊龙凯时平台 尊龙凯时平台 尊龙凯时平台